Organic Carbon Dynamics in the Baltic Sea

نویسندگان

  • Filippa Fransner
  • Jonatan Reuter
چکیده

Coastal seas constitute a link between land and the open ocean, and therefore play an important role in the global carbon cycle. Large amounts of carbon, of both terrestrial and marine origin, transit and are transformed in these waters, which belong to the more productive areas of the oceans. Despite much research has been done on the subject, there are still many unknown factors in the coastal sea carbon cycling. This doctoral thesis investigates the carbon dynamics in the Baltic Sea, with a focus on the production and fate of marine and terrestrial organic carbon and its influence on the air-sea CO2 exchange in its northernmost part, the Gulf of Bothnia. The main approach is the use of a coupled 3D physicalbiogeochemical model, in combination with a long series of measurements of physical and biogeochemical parameters. A new coupled 3D physical-biogeochemical model, which includes the stoichiometric flexibility of plankton and organic matter, is set up for the Gulf of Bothnia. It is found that phytoplankton stoichiometric flexibility in particular, with non-Redfieldian dynamics, is key to explaining seasonal pCO2, dissolved organic carbon (DOC), and nutrient dynamics. If the Redfield ratio is instead used to predict organic carbon production, as done in most biogeochemical models currently in use, the uptake of atmospheric CO2 is reduced by half. Furthermore, it is shown that the organic carbon production needed to reproduce the summer pCO2 drawdown is larger than measured estimates of primary production. This discrepancy is attributed to a substantial production of extracellular DOC, which seems not to be captured by measurements. The dynamics of terrestrial dissolved organic carbon (tDOC) is studied by the use of a passive tracer released from rivers into the physical model of the Baltic Sea. It is found that 80% of the tDOC released in the Baltic Sea is removed, and the rest is exported to the North Sea. Two different parameterisations of tDOC removal are tested. In the first one a decay rate with a timescale of 1 year applied to 80% of the tDOC, and the remaining 20% is assumed to be refractory. In the second one a decay rate with a timescale of 10 years applied to 100% of the tDOC. Trying these parameterisations in a full biogeochemical model shows that only the one with the faster decay is able to reproduce observations of pCO2 in the low-salinity region. A removal rate of one year agrees well with calculated removal rates from bacterial incubation experiments, indicating that bacteria have the potential to cause this remineralisation. It is not only remineralisation of tDOC that affects the pCO2; it is also suggested that a strong tDOC induced light extinction is needed to prevent a too large pCO2 drawdown by phytoplankton in the low salinity region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characteristics of dissolved organic matter in Baltic coastal sea ice: allochthonous or autochthonous origins?

The origin of dissolved organic matter (DOM) within sea ice in coastal waters of the Baltic Sea was investigated using parallel factor (PARAFAC) analysis of DOM fluorescence. Sea ice DOM had distinctly different fluorescence characteristics than that of the underlying humic-rich waters and was dominated by protein-like fluorescence signals. PARAFAC analysis identified five fluorescent component...

متن کامل

Consequences of increased terrestrial dissolved organic matter and temperature on bacterioplankton community composition during a Baltic Sea mesocosm experiment

Predicted increases in runoff of terrestrial dissolved organic matter (DOM) and sea surface temperatures implicate substantial changes in energy fluxes of coastal marine ecosystems. Despite marine bacteria being critical drivers of marine carbon cycling, knowledge of compositional responses within bacterioplankton communities to such disturbances is strongly limited. Using 16S rRNA gene pyroseq...

متن کامل

Composition and Transformation of Dissolved Organic Matter in the Baltic Sea

The processing of terrestrial dissolved organic matter (DOM) in coastal shelf seas is an important part of the global carbon cycle, yet, it is still not well understood. One of the largest brackish shelf seas, the Baltic Sea in northern Europe, is characterized by high freshwater input from sub-arctic rivers and limited water exchange with the Atlantic Ocean via the North Sea. We studied the mo...

متن کامل

Relationships between colored dissolved organic matter and dissolved organic carbon in different coastal gradients of the Baltic Sea

Due to high terrestrial runoff, the Baltic Sea is rich in dissolved organic carbon (DOC), the light-absorbing fraction of which is referred to as colored dissolved organic matter (CDOM). Inputs of DOC and CDOM are predicted to increase with climate change, affecting coastal ecosystems. We found that the relationships between DOC, CDOM, salinity, and Secchi depth all differed between the two coa...

متن کامل

Factors determining dry deposition of total mercury and organic carbon in house dust of residents of the Tri-city and the surrounding area (Baltic Sea coast)

The purpose of this study was to find out what factors determine the deposition levels of mercury and organic carbon in household dust in the Tri-city region (southern Baltic Sea coast). Analyses were performed on samples collected over the period of 2 years, from 2013 to 2015, always in the heating season. The deposition of organic carbon was between 4and 210 mg m-2 month-1, while mercury depo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018